Journal Metrics
Impact Factor: 1.211
ISSN Print: 1609-0985
ISSN Online: 2199-4757
Imprint: Springer
Journal Content Search
latest updated: 2015 / 07 / 30
Characterization of Impulse Radio Intrabody Communication System for Wireless Body Area Networks
Zibo Cai, 
MirHojjat Seyedi, 
Weiwei Zhang, 
Francois Rivet, 
Daniel T. H. Lai
Abstract
Intrabody communication (IBC) is a promising data communication technique for body area networks. This short-distance communication approach uses human body tissue as the medium of signal propagation. IBC is defined as one of the physical layers for the new IEEE 802.15.6 or wireless body area network (WBAN) standard, which can provide a suitable data rate for real-time physiological data communication while consuming lower power compared to that of radio-frequency protocols such as Bluetooth. In this paper, impulse radio (IR) IBC (IR-IBC) is examined using a field-programmable gate array (FPGA) implementation of an IBC system. A carrier-free pulse position modulation (PPM) scheme is implemented using an IBC transmitter in an FPGA board. PPM is a modulation technique that uses time-based pulse characteristics to encode data based on IR concepts. The transmission performance of the scheme was evaluated through signal propagation measurements of the human arm using 4- and 8-PPM transmitters, respectively. 4 or 8 is the number of symbols during modulations. It was found that the received signal-to-noise ratio (SNR) decreases approximately 8.0 dB for a range of arm distances (5–50 cm) between the transmitter and receiver electrodes with constant noise power and various signal amplitudes. The SNR for the 4-PPM scheme is approximately 2 dB higher than that for the 8-PPM one. In addition, the bit error rate (BER) is theoretically analyzed for the human body channel with additive white Gaussian noise. The 4- and 8-PPM IBC systems have average BER values of 10−5 and 10−10, respectively. The results indicate the superiority of the 8-PPM scheme compared to the 4-PPM one when implementing the IBC system. The performance evaluation of the proposed IBC system will improve further IBC transceiver design.
Home | Editorial Board | Archives | Special Issue | News | Contact | About JMBE | 08223566
National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (R.O.C.)
phone: (+886)-2-3366-1868     fax: (+886)-2-33551687     E-mail:jmbeoffice@gmail.com
Copyright ◎ 2015 Journal All rights reserved