Journal Metrics
Impact Factor: 1.211
ISSN Print: 1609-0985
ISSN Online: 2199-4757
Imprint: Springer
Journal Content Search
latest updated: 2015 / 07 / 30
CNN-SVM for Microvascular Morphological Type Recognition with Data Augmentation
Di-Xiu Xue, 
Rong Zhang, 
Hui Feng, 
Ya-Lei Wang
Abstract
This paper focuses on the problem of feature extraction and the classification of microvascular morphological types to aid esophageal cancer detection. We present a patch-based system with a hybrid SVM model with data augmentation for intraepithelial papillary capillary loop recognition. A greedy patch-generating algorithm and a specialized CNN named NBI-Net are designed to extract hierarchical features from patches. We investigate a series of data augmentation techniques to progressively improve the prediction invariance of image scaling and rotation. For classifier boosting, SVM is used as an alternative to softmax to enhance generalization ability. The effectiveness of CNN feature representation ability is discussed for a set of widely used CNN models, including AlexNet, VGG-16, and GoogLeNet. Experiments are conducted on the NBI-ME dataset. The recognition rate is up to 92.74% on the patch level with data augmentation and classifier boosting. The results show that the combined CNN-SVM model beats models of traditional features with SVM as well as the original CNN with softmax. The synthesis results indicate that our system is able to assist clinical diagnosis to a certain extent.
Home | Editorial Board | Archives | Special Issue | News | Contact | About JMBE | 08229172
National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (R.O.C.)
phone: (+886)-2-3366-1868     fax: (+886)-2-33551687     E-mail:jmbeoffice@gmail.com
Copyright ◎ 2015 Journal All rights reserved