Journal Metrics
Impact Factor: 1.211
ISSN Print: 1609-0985
ISSN Online: 2199-4757
Imprint: Springer
Journal Content Search
latest updated: 2015 / 07 / 30
An Automated Approach for Localizing Retinal Blood Vessels in Confocal Scanning Laser Ophthalmoscopy Fundus Images
Robert Kromer, 
Rahman Shafin, 
Sebastian Boelefahr, 
Maren Klemm
In this work, we present a rules-based method for localizing retinal blood vessels in confocal scanning laser ophthalmoscopy (cSLO) images and evaluate its feasibility. A total of 31 healthy participants (17 female; mean age: 64.0 ± 8.2 years) were studied using manual and automatic segmentation. High-resolution peripapillary scan acquisition cSLO images were acquired. The automated segmentation method consisted of image pre-processing for gray-level homogenization and blood vessel enhancement (morphological opening operation, Gaussian filter, morphological Top-Hat transformation), binary thresholding (entropy-based thresholding operation), and removal of falsely detected isolated vessel pixels. The proposed algorithm was first tested on the publically available dataset DRIVE, which contains color fundus photographs, and compared to performance results from the literature. Good results were obtained. Monochromatic cSLO images segmented using the proposed method were compared to those manually segmented by two independent observers. For the algorithm, a sensitivity of 0.7542, specificity of 0.8607, and accuracy of 0.8508 were obtained. For the two independent observers, a sensitivity of 0.6579, specificity of 0.9699, and accuracy of 0.9401 were obtained. The results demonstrate that it is possible to localize vessels in monochromatic cSLO images of the retina using a rules-based approach. The performance results are inferior to those obtained using fundus photography, which could be due to the nature of the technology.
Home | Editorial Board | Archives | Special Issue | News | Contact | About JMBE | 08020413
National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (R.O.C.)
phone: (+886)-2-3366-1868     fax: (+886)-2-33551687
Copyright ◎ 2015 Journal All rights reserved